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Summary

Climate projections from multiple sources display close agreement regarding future changes for the
Midwest region in annual and seasonal mean temperature, the frequency of temperature
thresholds including heat wave occurrences, and the magnitude of tempeuae indices such as
degree day accumulations. Comparison and integration of the downscaled temperature projections
also illuminate relatively consistent spatial patterns in projected future temperature change across
the Midwest. In contrast, projectionsof future precipitation change remain highly uncertain for the
Midwest. The majority of climate projections are in agreement regarding the sign of the projected
change for only the winter season. Precipitation intensity is generally projected to increasy the

mid and late century, although error in the downscaled simulations of the frequency distribution of
daily and subdaily precipitation for the current climate complicates interpretation of future

changes in intensity. Given the importance of extrene hydroclimatic conditions to the region,
improved simulation of precipitation is a high priority. Wind climates, particularly wind extremes,
represent a major vulnerability to the Midwest. Some wind extremes occur at scales below those
captured by globd and regional climate models or involve processes that are not well understood,
but the current suite of climate projections suggestlittle change in wind resources or wind

extremes to the middle of the current century.
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Introduction

Climate change projections, also referred to as climate
scenarios, are widely used for assessments of tipetential
impacts of climate change on natural processes and human
activities, including assessments conducted at the
local/regional scale such as the scale of the National Climate
Assessment Midwest region. A number of different
approaches are used to deslop climate projections, and the
strengths and limitations of each method must be taken into
consideration when selecting projections for use in a
specific application and when interpreting, comparing, and
integrating outcomes from multiple assessment stdies and
impact analyses.

This whitepaper focuseson climate projections for the
National Climate Assessment Midwest region, defined as the
states of Minnesota, lowa, Missouri, Wisconsin, Michigan,
lllinois, Indiana and Ohio (NationalClimate Assessment
Factsheet 2012). The goals of the whitepaper are twimld.
First, we briefly review commonly-used approaches to
develop local/regional climate projections and highlight
strengths and limitations. The intent is to provide readers
with a sufficient, although rudimentary, understanding of
climate projections for an informed and nuanced
interpretation of the substantial literature on potential

climate impacts in the Midwest region. Second, we
summarize by climate variable potential futurechanges in

the Midwest as synthesized from currentlyavailable peer
reviewed and gray literature. This whitepaper expands

Opi 1 OEA A1 AOi AT Oh O#1 EI AOA
by Kunkel et al. (2012) for the National Climate Assessment
Development andAdvisory Committee, in that it is more
comprehensive in scope, incorporating the wide range of
climate projections available for the

region.

Climate Projections

Downscaling Methods

Future Climate Sector

Common downscaling methods are briefly summarized
below and illustrated in Figurel. Several detailed reviews
of downscaling approaches are available (e.g., Mearns et al.
2003; Wilby et al. 2004 Benestad et al. 2008) The
summary below is drawn primarily from Winkler et al.
(2011a,b), and readers are referred to the original articles
for more information includinga EAAET EOQOOS6 |
considerations for evaluating alternative downscaling
options (Winkler et al. 2011a).

£

It is not possible to argue for one downscaling approach as

Ol EOAOOCAT T U OAAOOAOG OEAT ATT (
Rather, the different approaches should be viewed as
complementary, and the choice of downscaling approach(s)
should be appropriate b the assessment objectives.

Dynamically -downscaled climate projections

Dynamical downscaling employs numerical models, such as

regional climate models (RCMs), to simulate finreesolution

climate fields, and can be particularly useful when

mesoscale (a fer to several hundred kilometers)

circulations strongly influence the local/regional climate or

when regionalscale influences such as terrain or changing

land use are anticipated to have large effects on the future

climate of the region (Winkler et al. 2Q1a). RCMs, like

GCMs, are based on the fundamental equations of

atmospheric dynamics and thermodynamics. For this

reason dynamical downscaling is often a better choice when

an assessment requires a suite (e.g., temperature, humidity,
_wind, and radiation) of physically consistent and spatially = = .
[ affdl témhpofally-cohérenfeiiiate vafadlés dHans& BB A OA A

et al. 2005). Typical horizontal resolutions of RCMs for

multi -decadal, continentaiscale simulations are on the

RCMresolution
(e.g.50 x 50 km)
1\

Most often, climate change projections

are derived from simulations oliained -

from global climate models (GCMs). -
GCMs have a relatively coarse spatial

resolution; for example, those used for Stations

the Intergovernmental Panel on Climate

Fineresolution
(e.g.1 x1 km)

Change Fourth Assessment Report (IPCC
ARA4) had latitude longitude spacing that

Ce

Regional Climate »
Change Scenarios W

Local Climate
hange Scenario

Y

ranged from 4 by 5°to about 1.1° by 1.1°.
4EEO | = 0A

methods to infer the high spatial and/or ‘

Dynamical ==» Empirical-Dynamical

Disaggregation ==» Qutput

temporal resolution needed for many
impact assessments. Downscaling
procedures traditionally are classified as
AEOEAO OAUT AT EAAITI &
2011a.
4

Figure 1.lllustration of the spatial scales of climate projections, as developed using
dynamical, empiricaflynamical, and disaggregation downscaling methods applied to GC
simulations. Note that multiple downscaling stegas be applied. SOURCE: Winkler et al.,
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order 25-50 km (Rummukainen 2010). Simulationswvith available to all parties and for maw variables at a daily or
resolutions of only a few kilometers are possible using higher temporal resolution.

multiple nested RCMs, or when considering shorter periods

or smaller domains (e.g., Liang et al. 2004; Hay et al. 2006). Statistically -downscaled climate projections

For comparison to observations, RCMs are driven by lateral . . . .
boundary condtions obtained from reanalysis fields, in A w!dg variety of e”.‘p'“"a' methods are employed in
which a GCM is constrained to follow observations. The statistical dpwnscglmg. FoIIowmg.kaIer etal (_2011a),
OAAI Al UGEOR xEEAE OAOU OEI DI (' Samof'Zﬂ,%Ea“%%';'d%p%%ng PORIAcREs intg ey 5§ A |
of observations and model output, is considered to road. categorleg, hametly emp iricatynamical dpwpscalmg
OADOAOGAT O A ODAOAAAGpossiple)i OA ANASERIARI I flonpReaing ATRe ategorization
GCM and thus allows the errors and biases of the RCM itself reflects d'. fering underlying phllosop 1€s n the .

to be isolated. RCMs are also driven by coarseale downscaling approgch. Emp|r|ca4dynam|ca_l downscaling
simulations from GCMs both for historical and future does_ hot operate directly onthe varlable of interest as
periods. Comparisons of RCM results when driven by pre_d|cted by the global model, typlqa]ly a surfacg weather
historical reanalyses withcorresponding results when variable such as temperature, preC|p|tat|p h or Wm.d spe.ed.
driven by a GCM simulation of the corresponding period Instead, the variable is inferred from derived relationships

help to determine errors attributable to using the GCM's to large-scale variables predicted by the modeiand

depiction of current climate to force the downscaled results. selected to_represent important dynamical and phy_sm_al
processes in the atmosphere. For example, precipitation can

be inferred from a mid-atmospheric circulation property
such as vorticity (e.g.Schoof et al. 2010) Underlying this
approach is theassumption that GCMs are able to better
OEi 61 AOGA AEOAOI AOCET 1 aholerhe O EOA |
boundary layer) variables compared to surface climate
variables, as they are less influenced by complex surface
fluxes and interactions. Thus, the circulatin and free
atmosphere variables represent the larger scale
environment, and the empirical relationships implicitly
capture the effects of local topography, geography and
boundary conditions on the surface variables. Another
important assumption is that the circulation and/or free
atmosphere variables capture the climate change signal.
Many empirical-dynamical downscaling approaches are
patterned after short-range forecasting techniques such as
model output statistics (MOS; Karl et al. 1990) or employ
weather typing techniques to link circulation with local or
regional climate.

Resource constraints often limit RCM simulations to
relatively short periods of a few decades in length (e.g.
Christensen et al. 2002; Leung et al. 2004; Plummer et al.
2006), especially when a very fine resolution is employed
or when simulations are nee@d over a large spatial
domain. Furthermore, simulations with a given RCM
typically have been driven by a single GCM or only a small
number of GCMs. This limitation arises from several
practical considerations: GCMs do not usually store the high
time resolution data needed for RCM boundary conditions;
the differing output formats for different GCMs require
extensive coding or data reformatting so that the data can
be read by the input procedures used in the RCMs; and
execution of RCMs requires substantialomputing time and
human resources. Both short simulation periods and
limited number of GCMs used in RCM studies have
implications for evaluating the uncertainty surrounding
projected changes. These constraints may be ameliorated
in future RCM simulatiors that use the CMIP5 GCM results
currently being produced. The CMIP5 protocol includes
provision for saving output from participating GCMs at
sufficient time resolution for use as RCM boundary
conditions so that suitable output from more GCMs will be
available. The CMIP5 GCMs also use a standard output
format which should reduce the effort needed to

Disaggregationmethods attempt to infer fine-scale values
from coarse-scale spatial or temporal fields of a particular
variable, such as precipitation, although additional
variables, including circulation and free atmosphere
variables, may be included in the downscaling function to

adapt an RCM to boundary values from different Table 1: Available NARCCAP simulations.
GCMs.

Regional Global Climate Models (GCMs)
An example of dynamical downscaling is the North Climate Models GFDL CGCM3 HADCM3 CCSM NCEP
American Regional Climate Change Assessment (RCMs)
Program (NARCAP;Mearns et al. 2009, 201}, CRCM X X X
which has generated a uniquely detailed suite of ECP2 X X X
regional-scale climate output that is being used HRM3 X X X
extensively in the National Climate Assessment. MMSI X X X
Under NARCCAP, RCMs have been driven both by RCM3 X X X
reanalysis fields and by GCM redts. In the former WRFG X X X
the lateral boundary conditions are supplied by Time Slices X X
output from the NCERDOE reanalysis (shown as ECPC X
NCEP in Table 1), while in the latter a suite of four WRFP X
GCMs has been used to provide the nesting. Output i: SOURCHttp:/fwww.narccap.ucar.edu/
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improve the relationship. Often the largescale values are
first adjusted for bias (error) in the GCM simulated values.
To date, disaggregation downscatig has been the most
common approach for developing local/regional climate
projections. The relatively fewer resources needed for
disaggregation downscaling methods compared to either
dynamical or empirical-dynamical downscaling likely has
contributedto tEAEO BT pOI AOEOGUS8 )1
i AOET A6 xAO T1TA
employed in climate impact assessments. For this popular
approach, coarsescale GCM simulations of monthly means
and accumulations of climate variables (e.g., sate
temperature and precipitation) are spatially interpolated to
a finer resolution grid or to station locations, the difference
or ratio between the GCM projected value for a future
period and for a control (historical) period is calculated,

and the differences (for temperature) or ratios (for
precipitation) are applied to gridded or station specific
historical observed time series. One limitation of the delta
method is that it does not capture future changes in
variability. Temporal disaggregation is alsccommonly used.
For example, stochastic weather generators (e.g. Wilks
1992; Katz 1996; Semenov and Barrow 1997; Dubrovsky et
al. 2004, Qian et al. 2008; Semenov 2008) are often used to
obtain finer temporal resolution from monthly projections.
Typically, weather generators use Markov processes to
simulate wet/dry days and then estimate wet day amounts,
temperature and solar radiation conditional on

precipitation occurrence (Wilby et al. 2004; Wilks 2010).
Recent developments in weather generators include
preserving the spatial and temporal correlations of the
climate variables among locationge.g., Baigorria and Jones
2010).

An assumption of both empiricaldynamical and
disaggregation downscaling is that the statistical relations
are stationary in time;i.e., relationships observed for the
current climate will be applicable in the future. In contrast
to dynamical downscaling, statistical downscaling is not as
resource intensive, making it easier to build a larger
ensemble (i.e., suite) of projections &sed on a number of
GCMs and also to include multiple future time slices.

Available Climate Change Projections for
the National Climate Assessment Midwest
Region

In the support documents provided by Kunkel et al. (2012),
four sets of climate projections are utilized. These include:
1) coarsescale simulations from fifteen GCMs obtained as
part of the Climate Model and Intercomparison Project
Phase 3 (CMIP3; Meehltal., 2007), 2) time series of
monthly temperature and precipitation at a 1/8°
latitude/longitude resolution obtained by applying a
combined bias correction and spatial disaggregation

Al xT OAAT ET ¢ DOT AAAOOA ETT x1

(Maurer et al. 2002) to the CMIP3 GCM simulations, 3) daily
time series of temperature and precipitation obtained from
temporal disaggregation of the BCSD spatially downscaled
monthly and temperature values by adjusting randomly
selected observed daily tine series by the projected
differences in the monthly values (i.e., the delta method),
and 4) nine RCM simulations obtained from the North

xe) T b ARiericdn ®egianCliniate Khadya AsseSsinent Project
i £/ OEA EEO0OO (MARRGAR)A FhisktheQuidantépkolidedto the National

Climate Asessment includes one set of nedownscaled
climate projections, two sets of projections downscaled
using disaggregation approaches but with different
temporal resolutions, and a set of dynamicalhdownscaled
projections.

Considerable additional resourcs are available for climate
change assessments for the Midwest region. A number of
fine-resolution climate projections with global coverage
have been developed by research groups worldwide that
may be relevant for assessment activities in the Midwest
depending on the assessment goals. Additionally, climate
change projections have been developed specifically for the
Midwest. Available climate projections are summarized in
Appendix 1. As can be seen from the table, these projections
differ in terms of downscaling procedure, resolution, time
slices, the number of GCMs from which projections are
derived, and the underlying greenhouse gas emissions
scenarios.

Considerations when Using and/or
Interpreting Climate Projections

As noted above, climate projectins are important
components of climate impact studies; however, they must
be interpreted carefully, keeping in mind the underlying
assumptions and limitations and possible sources of
uncertainty. Below we highlight three issues of particular
significancewhen interpreting and using climate
projections.

Influence of regional topography or circulation on
climate

Unique characteristics of a region need to be taken into
consideration when interpreting local/regional climate
projections. An example for the Mlwest of topographic
influences is the Great Lakes and the surrounding lake
modified climates. The Great Lakes are crudely represented
in GCMs; for example, in the HadCM3 model used in IPCC
ARA4, the lakes appear as a single water body (Figure 2).
Consequently, simple spatial interpolation of GCM output to
a finer-resolution grid or a location will result in climate
projections that inadequately (if at all) capture the
influence of the Great Lakes on the local climate.
Furthermore, dynamical downsgeaénlg 18ing_ RCMs may not

Aty cSHtufe thQefrécBoPthella d Miafly RCMs do not
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2007). Less frequently, an ensemble inclues projections
derived using multiple downscaling methods. A schematic
illustrating the potential components of an ensemble of
climate projections is shown in Figure 3.

Multi-model means, or in other words the average of the
individual members, are freqently used to summarize an
ensemble of climate projections, and indeed this is the
approach used by Kunkel et a[2012) in the National
Climate Assessment support documents. The motivation for
this usage comes from medium range weather forecasting,
where the ensemble mean has been shown on average to be
a better prediction than the prediction of an individual
member (Christensen et al. 2010) The most common
method for producing the ensemble mean is to take the
simple arithmetic average of all participatirg models.
Alternative methods have been proposed in which the
participating models are unequally weighted (e.g., Giorgi
and Mearns 2003). However, recent research concluded
Qve do not find compelling evidence of an improved
description of mean climate stées using performance
AAOGAA xAECEOO ET Al i BAOEOIT OI
(Christensen et al. 2010) Transferring this concept to
climate projections is hindered by the interdependence
among the ensemble members, as GCMs and RCMs employ
similar numerical schemes and parameterizations (Tebaldi
and Knutti 2007). Because of this interdependence,
consensusamong projections should not be confused with
skill or reliability (Maraun et al. 2010). Another situation
where a multimodel mean may be misleading is when some
members of an ensemble project a positive change in a
climate variable while others project anegative change. In
this case, the multimodel mean of the projected change can
approach zero even though all of the ensemble members
project a substantial change but of opposite sign. The near
zero ensemble mean may be interpreted as "no change"
when an aguably more informative interpretation is that

the nature of the change is uncertain. Precipitation
projections tend to highly uncertain and often of opposite
sign; thus, simple multimodel means may not be very
informative in considering future changes m precipitation.

Figure2. Landsea mask for North America in the HadCM3 globa
climate model, one of the models used in the IPCC ARA4.

include a lake module, and lake temperature is crudely
estimated in some RCMs as the average of nearshore
Atlantic and Pacific temperatures.

The impacts of regionallyspecific aitnospheric circulation
must also be considered when interpreting and using
climate projections. As an example, the western portion of
the Midwest region frequently experiences a southerly low
level wind maximum known as the "lowlevel jet,"
especially at nght during the warm season (Walters et al.
2008). These jets contribute to the transport of moisture
into the region, and downstream convergence can act to
initiate or sustain convective precipitation systems that
propagate across the region. The lovevel jet is poorly
represented in some GCMs and RCMs, introducing
uncertainty into warm season precipitation projections.
Furthermore, the propagating mesoscale convective
precipitation systems induced by the jet are poorly
represented at typical RCM grid sacings (Anderson et al.
2007) and are absent in GCMs executed at typical climate
scales.

Ensembles and multi -model means

One of the most robust conclusions from climate model O3EAI £ 1T EEAG T £ Al Ei AOA DPOI
evaluation studies is that there is no single best model for
all locations, periods, or variables of interest (Pierce et al.

2009). Therefore, most climate change assessments employ i L
an ensemble (i.e., suite) aflimate projections. As pointed climate projections developed from IPCC AR4 era GCMs. On

out by Winkler et al. (2011b), ensembles provide an the other hand, the available peereviewed literature for a

AOOEI AGEI T 1 /& xEAO *11AO | i%ﬁ“'%%&?&% Eﬁg'ogfamp& C"@@%’m@%%‘? EAOAO

old Ig na |on re e(&e

The National Climate Assessment organizers have
requested that any new analyses for the assessment utilize

OAT CA 1T &£ O1 AAOOGAET OUd h AT %q
OAZEAO O AO OEA OI i xAO A|OTASW plationg. ﬂa?égﬁ ”aL* gl lag bgtwe

6T AROOAET OUd8 %l OAlI Al A0 000A|”1ei?Ie ‘ﬁe% 55@@%‘%% W@@WW%@EoA
from a number of different GCMs and projections obtained downsc ed climate projections, and a further lag

from GCM simulations driven with different greenhouse gas ass_ocrc_lted with the_ evalu_atlon O.f th(_a downscaled

emissions scenarios. More recently, projections developed prOJectlons apd their use in appllcatlo_ns. Thus, much of the

from multiple simulations from the same GCM, but where Iltgrature reviewed fo_r the Natlonal Cl|m<_':1te Assgssment

selected physical parameterizations are perturbed or where will have employed simulations from ealier versions of

initial conditions have been slightly modified to evaluate GCMs. As p0|nte<t:1_ out bt);lV§[/|nkIer etal. (2011b).' thef GCM
variability, are included in an ensemble (e.g., Murphy et al. common assumption Is that once a hewer version of a
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is available scenarios based on older versions are obsolete.
Against this view it can be argued that older model runs
have an advatage in that they often have been extensively
compared to observations. Thus, the characteristics and
limitations of older model runs are better understood than
are those of newer models that have not been as thoroughly
evaluated. Additionally, recent gidance from the IPCC
(Knutti et al. 2010) suggests that it may be appropriate to
AT TAETA "#- OEI Ol ACEIT 1
ensemble. Concomitantly, it is appropriate to integrate
outcomes from assessment studies that used climate
projections devdoped from older versions of GCMs with
those that employed scenarios developed from more recent
GCM simulations.

Evaluation of Climate Projections

Evaluation is the responsibility of both the suppliers and

the users of climate projections. Here we summarize recent
attempts for the Midwest region to evaluate GCM
projections and RCM simulations available from NARCCAP.
These examples were selected to illustrate evaluation
techniques and strengths and weaknesses of climate
projections. Although evaluation examples are provided for
only one downscaling method (i.e., dynamical downscaling),

CGCM3

\Hadcm3 GFDL) .
Cccsh :

MultlpleGCMs \ /
’./7

M A2 \\

O A&EOTIi

1 Multlple simulations for

each GCM with 1

perturbed physics and

Future Climate Sector White P

evaluation is also a necessary step for statistical
downscaling. An important consideration is that the
evaluation needs to be conducted in light of the potential
application, and the climate variables includd in an
evaluation should reflect the key concerns of the
application. As an example, a recent evaluation of an
empirical-dynamical downscaling procedure employed a
large suite of precipitation metrics selected to represent
fuluiEe AvEdg EsAn pcipeficdtAréshold& dnd ttemes
including, among others, wet day probability, mean dry
spell length, wet day precipitation intensity, and the 90th
percentile of wetday precipitation (Schoof et al. 2010).

GCM simulations

Several studies have provided informatia on GCM
performance relevant to the Midwest region. RuiBarradas
and Nigam (2010) examined precipitation over North
America in four GCMs (CCSM3, GFDL CM2.1, HadCM3, and
ECHAMDb). They noted seasonal differences in regional
precipitation biases, with thewestern U.S. generally being
too wet in spring and the central U.S. being too wet in
summer (except for CCSM3). They found that interannual
variability of precipitation in the Great Plains region (which
includes the western part of the Midwest region thats our
focus) was generally similar to observed values, though the
performance of each model was not necessarily consistent

... \ Y
3 I \ % LY
Multiple Downscalmg
Approaches

e N
["CP 8.5 RreCP 67
l 26 .| Fy
\RcP & &
® g
N\ B1 B2 / g
S/ £
Multiple
Future GHG
Concentrations ;

Projected climatechange

Agricultural
Models

Hydrology
Models

Ecology
Models

Impact Models

Figure 3.Development of an ensemble of climate projectidiiee dashed line indicates uncertainty sources that are

infrequently considere(SOURCRYinkler et al. 2011b.
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across seasons. The models varied in their ability to
capture remote influences of seasurface temperature on
Great Plaingprecipitation, with CCSM3 failing to reflect the
observed correlation with central Pacific sessurface
temperature. McCrary and Randall (2010) examined 20th
century drought over the Great Plainsin three GCMs
(CCSM3, GFDL 2.0, and HadCM3). They found that ahef
models produced excessive precipitation over th&reat
Plains. Simulated drought for the region was comparable to
observations but the models differed in the nature of their
drought forcing. While drought in GFDL CM2.0 and
HadCM3 corresponded with dw-frequency variations in
seasurface temperature, CCSM3 showed no significant
correlation between precipitation and tropical Pacific sea
surface temperature (which is broadly consistent with the
findings of RuizBarradas and Nigam 2010). They suggest
that drought persistence in CCSM3 may be related to local
feedbacks arising from that model's tight landatmosphere
coupling.

In a more comprehensive study, Wehneet al. (2011)
evaluated 19 models from CMIP3 focusing on their ability to
reproduce observed temperature, precipitation, and
drought incidence over North America as measured by the
Palmer Drought Severity Index (PDSI). Results for the
North American domain as a whole showed that all models
underpredicted the areal extent of drought. Although
Wehner et al. (2011) did not focus specifically on the
Midwest, their computations of ensemble means across all
models show that over most of the Midwest temperature
bias is slightly negative while precipitation bias is small. As
noted elsewhere ensemble means can hide substantial
inter-model variability and the authors noted substantial
variations in performance amongst the models. Diagnoses
of PDSI from projectionsthrough the 21st century following
the A1B emissions scenario showed that all models
produced increases in the frequency and severity of
drought. An interesting finding from their study is that
much of the variability amongst the model projections,
which often has been taken as a measure of uncertainty,
results from differences in climate sensitivities amongst the
models (i.e., projected temperature change for a given
change in greenhouse gas concentrations). Variations in
model projections for drought were lower when the models
were referenced to a given temperature change rather than
a given time period.

NARCCAP simulations

Evaluation of downscaled nearsurface variables for a
historical period can be used to assess the skill of the
downscaling. Mearnset al. (2012) examined a variety of

skill metrics for NARCCAP simulations of precipitation and
temperature in current climate (1980-2004) using

reanalysis fields as boundary conditions. Consistent with
other studies they found there was no single best nuel
across all metrics. There were suggestions of an advantage
for regional climate models that use spectral nudging, in
which the largest spatial scales of the boundary data are

Future Climate Sec

used to constrain the interior of the model domain as well
as the boundaries

Evaluations using the NARCCAP suite to simulate multiple
descriptors of wind climates over the contiguous . (Pryor
and Barthelmie 2011, Pryor and Barthelmie 2012a, Pryor et
al. 2012d) suggest that application of the RCMs improves
the simulation of wind climates during 1979-2000 relative

to the driving reanalysis and that the RCMs exhibit some
skill in depicting historical wind regimes. Furthermore,
evaluation of 50-year return period wind speed derived

from the NARCCAP output for the historical peoid (1979-
2000) relative to extreme wind speed estimates computed
from station observed daily maximum fastest mile speeds at
35 stations across the contiguous 3. revealed that the
RCMs exhibit some skill in capturing the macrscale
variability of extreme wind speeds. Simulations of intense
and extreme wind speeds by the RCMs were found, at least
to some degree, to be independent of the lateral boundary
conditions, instead exhibiting greater dependence on the
RCM architecture. Although not employing NARC®A
simulations, a recent analysis of dynamicalkgownscaled
wind speeds for a nominal height of 10 m with the lowest
model level (approx. 70 m a.g.l.) from the Rossby Center
RCM (RCA3) run at four resolutions (ranging from 58 50
km to 63 6 km) found that model resolution had the largest
impact on wind extremes compared to central tendency
(Pryor et al.2012¢).

An understanding of the spatial differences in the
performance of downscaled projections, such as the
dynamically-downscaled NARCCAP simulationi critical
when interpreting projected future changes. Cinderich
(2012) recently completeda comparison for the Great

Lakes region of the NCE#riven simulations for five of the
RCMs in the NARCCAP suite to-&n resolution

temperature and precipitation values from the North
American RegionaReanalysis (NARR; Mesinger et al. 2006)
for 1981-2000. Largeinter-model differences in

performance are evident(Figure 4). January mean
temperatures from the HRM3 simulation are considerably
warmer than NARR tempeatures across the entire Great
Lakes domain, whereas for the other RCMs the January
mean temperatures are warmer than NARR only in the
southwestern and/or western portion of the domain. In
contrast, the simulated July mean temperatures are cooler
than the NARR values across much of the domain for the
ECP2, MM5I and WRFG simulations. The CCRM and NARR
July mean temperatures are comparable across most of the
U.S. portion of the Great Lake region, whereas the HRCM3
mean July temperatures are warmer than NARR the
western portion of the domain. For both months, large
deviations in air temperature are seen over the Great Lakes.
These differences likely reflect error in both the RCM and
NARR temperature fields. In January, the RCMs,
particularly ECP2, tendto overestimate mean daily
precipitation compared to NARR in the northern portion of
the Great Lakes region, whereas in July precipitation is
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Figure 4 Mean surfaceair temperature differences betwe®hARR anfive NARCCAP simulatidns Januaryand July. The top
row (from left to right) shows the differences for the CRCM, ECP2, and HRM3 simulations and the bottom row the differel
the MM5I and WRFG simulatioi®OURCE: Cinderich (2012)

underestimated in the southwestern and/or western eastern shore of Lake Michigan and the NCERiven RCM

portions of the domain (Figure 5). simulated temperature at the neaest land grid point
(Figure 6; Abraham et al., personal communication).

A final example of the evaluation of NARCCAP simuitats Additionally, GCMdriven RCM simulations for a historical

for the Midwest focuses on the differences in the period are compared to observed values and the simulated

distribution of daily maximum and minimum temperatures values from the NCERIriven run. For brevity, histograms

between the observations at individual stations along the are shownfor only one location (Eau Claire, Michigan) and

10
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one RCM (WRFG). When the annual distribution of daily
maximum and minimum temperature is considered (top
two histograms in Figure 6), the frequency distribution
obtained from the NCERdriven WRFG simulationfollows

1

closely the observed distribution. However, when the
observed distributions are compared to the frequency
distributions for the historical simulations driven by the
GCMs, larger deviations are observed, particularly a
substantial cold bias for the CCSMriven simulation.

1




































