Climate Change in the Great Lakes

Great Lakes Integrated Sciences & Assessments

GLISA

GREAT LAKES INTEGRATED SCIENCES + ASSESSMENTS

NOAA Regional Integrated Sciences and Assessments (RISA)

Regional teams that help the nation to prepare for and adapt to climate variability and change

GLISA's Approach

- Interpret existing information and data for stakeholders
- Provide *locally* relevant climate synthesis:
 - What has happened?
 - What could happen?
 - What are the impacts?

Global | Regional | Local

• There are multiple ways of looking at climate change:

- Global
- Regional
- Local

• Local factors can drastically alter the magnitude of climate change impacts, but can also be adapted to more readily.

Global | Regional | Local

Rising Temperatures

Observed

2.3°F Warmer

1951-2020

Future

3 to 6°F Warmer

2040-2059

Winters are Warming Faster

Freeze-Thaw Cycles

The number of freeze-thaw cycles are decreasing regionwide

A Longer Frost-free Season

Observed 16 Days Longer 1951-2020

Source: GLISA and Univ. of Wisc. Nelson Institute

More Precipitation

Total annual precipitation in the region has increased by:

17%

Uneven changes across the Region

More Extreme Precipitation

1% Heaviest Precipitation Events:

24%

Nuisance flooding and minor damages are reported more frequently after these events

More Extreme Precipitation

Observed Changes (%) in the Intensity of the 1% Heaviest Precipitation Days (1951-1980 vs. 1981-2010)

Data: GHCND (NOAA)

Change in Snowfall

Impacts

Algal Blooms and Water Quality

Stormwater Impacts

With increased extreme precipitation events, intense, flashy runoff amplify flooding risks.

Ontario Spring 17' Flood

U.S. Army National Guard

Lake Levels

Main drivers of water supply on the lakes are:

- Precipitation -Evaporation + Runoff
- All three drivers are affected by regional climate change

Future Lake Levels

- Future water level changes will depend on whether precipitation or evaporation dominate
- Short-term variability with periods of high and low lake levels are still anticipated

Impacts of Lake Levels

- Boating and recreation
- Shipping and navigation
- Property
- Fisheries and wetlands

Impacts of Variable Great Lakes Ice Cover

- Fishing Industry: Ice cover protects whitefish spawning areas. Great Lakes commercial fishing is \$4 billion industry.
- Coastal Zone: In nearshore areas, ice provides stable platform for recreation and protects wetland areas from erosion.
- Water Levels and Navigation: Heavy ice cover can reduce evaporation and contribute to higher water levels in the following seasons—good news for shipping.

Potential Impacts on Shipping

Every lost inch of water depth:

- Reduces cargo capacity
 50-270 tons
- Costs \$10k-30k per transit.

...but less lake ice cover allows for a longer shipping season

Plants and Wildlife

- Forest ecosystems forced northward
 - Maple-Beech-Birch forest displaced
- Amplified stressors on biodiversity
 - Declining Coldwater fish populations, species migrating northward
- Agriculture
 - Longer growing season
 - Water availability, warm spells, spring freezes, flooding, and drought will reduce crop yields

